Extension of IMC tuning correlations for non-self regulating (integrating) processes.
نویسندگان
چکیده
The filter term of a PID with Filter controller reduces the impact of measurement noise on the derivative action of the controller. This impact is quantified by the controller output travel defined as the total movement of the controller output per unit time. Decreasing controller output travel is important to reduce wear in the final control element. Internal Model Control (IMC) tuning correlations are widely published for PI, PID, and PID with Filter controllers for self regulating processes. For non-self regulating (or integrating) processes, IMC tuning correlations are published for PI and PID controllers but not for PID with Filter controllers. The important contribution of this work is that it completes the set of IMC tuning correlations with an extension to the PID with Filter controller for non-self regulating processes. Other published correlations (not based upon the IMC framework) for PID with Filter controllers fix the filter time constant at one-tenth the derivative time regardless of the model of the process. In contrast, the novel IMC correlations presented in this paper calculate a filter time constant based upon the model of the process and the user's choice for the closed-loop time constant. The set point tracking and disturbance rejection performance of the proposed IMC tunings is demonstrated using simulation studies and a bench-scale experimental system. The proposed IMC tunings are shown to perform as well as various PID correlations (with and without a filter term) while requiring considerably less controller action.
منابع مشابه
A Unified IMC based PI/PID Controller Tuning Approach for Time Delay Processes
This paper proposes a new PI/PID controller tuning method within filtered Smith predictor (FSP) configuration in order to deal with various types of time delay processes including stable, unstable and integrating delay dominant and slow dynamic processes. The proposed PI/PID controller is designed based on the IMC principle and is tuned using a new constraint and without requiring any approxima...
متن کاملA Rule Based Design Methodology for the Control of Non Self-Regulating Processes
Non self-regulating (integrating) processes move in an unbounded manner when perturbed in open loop by a bounded manipulated or disturbance variable. It is not uncommon for some temperature, level, and pressure control loops to display this type of behavior. Integrating processes are surprisingly challenging to control and can move to extreme and even dangerous levels if left unregulated. An ad...
متن کاملIntuitive robust stability metric for PID control of self-regulating processes.
Published methods establish how plant-model mismatch in the process gain and dead time impacts closed-loop stability. However, these methods assume no plant-model mismatch in the process time constant. The work presented here proposes the robust stability factor metric, RSF, to examine the effect of plant-model mismatch in the process gain, dead time, and time constant. The RSF is presented in ...
متن کاملEnhanced IMC-based Load Disturbance Rejection Design for Integrating Processes with Slow Dynamics
By revealing the deficiency of existing internal model control (IMC) based methods for load disturbance rejection for integrating processes with slow dynamics, a modified IMC design is proposed to deal with step or ramp type load disturbance as often encountered in practice. The controller parametrization is based on a two-degree-of-freedom (2DOF) control structure which allows for independent ...
متن کاملProbably the best simple PID tuning rules in the world
The aim of this paper is to present analytic tuning rules which are as simple as possible and still result in a good closed-loop behavior. The starting point has been the IMC PID tuning rules of Rivera, Morari and Skogestad (1986) which have achieved widespread industrial acceptance. The integral term has been modified to improve disturbance rejection for integrating processes. Furthermore, rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISA transactions
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2007